

Li-ion Battery Recycling

Deep Dive | 8th September 2023

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the permission of the copyright owner.

Legal Notice

All content provided in this report is provided for general informational purposes only. Twin Towers Ventures Pte. Ltd. and its affiliates ("TTV") makes no representations or warranties of any nature as to the accuracy or information contained in this report and no liability can be accepted for any error or omissions. Unless otherwise stated in the report, any predictions, forecasts, conclusions, views or opinions expressed represent the current view and thinking of TTV with regard to the subject matter therein as of 8 September 2023, may be based on internal data and/or analysis which has not been independently verified.

Under no circumstances should any information or content provided in this report be construed as investment, legal, tax or accounting advice by TTV. All recipients of this report should consult with their own legal counsel, accountant or other professional advisors before taking any action in connection with this report. TTV does not guarantee any future results for any decisions made based in whole or in part on the content or information contained in this report.

All logos, trademarks and images of third parties referenced herein are the logos, trademarks and images of their respective owners. Any inclusion of such logos, trademarks and images does not imply or constitute any approval, endorsement or sponsorship, of TTV by such owners, or of such products by TTV. Any content drawn from third party sources and all content in any third-party links included in this report have not been independently verified by TTV and the inclusion of such content and/or links should not be interpreted as an endorsement or confirmation of the content.

Context

Market Outlook

Tailwinds

Technology

Competitive Landscape

Economics

9)

10)

7)

1

2

3

4

5

6)

Headwinds

Investment Space

Executive Summary

Set to experience significant growth riding the wave of the booming EV market

Li-ion Battery Recycling

The collection and reprocessing of used lithium-ion batteries to **recover valuable materials** while mitigating hazardous environmental impact.

Key Drivers

The global Li-ion battery market is projected to grow at **~34%** in the next 10 years driven **by supply and demand for electric vehicle batteries**, **regulatory support, circular economy, and technological advancements.**

Industry Maturity and Investments

In terms of maturity, the industry is in its **nascency**. Starting 2021, the space has seen an influx of capital (~\$4b), enabling several startups and companies to achieve premium valuations.

Widespread profitability has yet to be established; projected gross margins stand at 13-31%.

Technology

The battery recycling procedures encompass four primary methods: Mechanical, Pyrometallurgy, Hydrometallurgy, and Direct. Among these, Hydrometallurgy stands out as the preferred approach for recycling due to its optimal balance between metal recovery rate, process intricacy, technological advancement, and environmental implications.

Challenges

Some headwinds seen faced in the industry include battery collection, transport, battery lifespan standardization, manual processes, scaling up operations, and mineral composition.

Executive Summary

Context Overview and Global Landscape

Market Outlook

Tailwinds

5 Technology

1

2

3)

4

6)

7)

9)

10)

Competitive Landscape

Economics

8 Headwinds

Investment Space

Overview

Battery Recycling

The collection and reprocessing of used Lithium-ion ("Li-ion") batteries to **recover valuable materials** while mitigating hazardous environmental impact

PAST: Low recovery rates for active materials Unsustainable amounts of energy and chemicals <u>FUTURE:</u> Higher recovery rates Cleaner process for largescale recycling

Lithium-Ion Battery

Rechargeable High energy density Low self-discharge Predominantly used in consumer electronics, electric vehicles, grid-scale energy storage, and aerospace applications

Lead Acid

Lithium-Ion Battery Value Chain (EV)

LFP200-12 (12.8V 2004)

Overview

Lithium ("Li-ion") Batteries

Most important part of an electric vehicle is the battery cells. About ~**40% of the cost of a vehicle**.

An electric vehicle is powered by thousands of lithium-ion battery cells

2 Dominant Cathode Chemistries:

1. Lithium Nickel Manganese Cobalt (NMC)

Higher energy capacity, higher range Expensive

Generally seen in the West, where EVs are a "luxury."

2. Lithium Iron Phosphate (LFP)

Lower energy capacity, lower range Less expensive (~30% cheaper) Generally seen in the East where EVs are more "mass market."

Lithium-ion battery

Global Landscape

The battery recycling arena is comprised of three main markets

APAC | 1st | 45%

The value chain holds strong roots in China as the **first country to enact supportive policy for the industry**, with almost a decade-long head start

Trailing the EV Boom

Starting in **2011** as part of China's 12th Five-Year Plan, the Chinese government set targets for electric vehicle (EV) sales and supported them through government subsidies

Those incentives made China the earliest and largest EV market in the world, creating a momentum that other governments are left chasing

With a decade long head start, they have encountered the first wave of EV end-oflife batteries

North America | 2nd | 33%

Presence in EV battery recycling is more recent, more SMEs headquartered in the US are seen emerging

2021

Battery materials have become part of the national strategy; the U.S. has funded several battery recycling projects as part of the **Bipartisan Infrastructure Law**

Battery Recycling Players by Region

Europe | 3rd | 22%

The EU proposed comprehensive policies to manage battery end of life, requiring high recycling rates

The quota calls for a recovery level of 95% for cobalt, copper, lead, and nickel, as well as 70% for lithium

2

3)

4

6)

7)

9)

10)

Executive Summary

Context

Market Outlook Historical Performance and Projections

Tailwinds

5 Technology

Competitive Landscape

Economics

8 Headwinds

Investment Space

2021 Exponential Lift-Off

Lithium-Ion battery demand surges due to the rise of electric vehicles

Historical

The Number of EVs Sold Globally, 2016-2023E (in millions)

Historically, the EV market has seen exponential growth Units sold exceeded ~**10 million** in FY2022.

EV % of all new cars sold	<5%	9%	14%	18%
	2020	2021	2022	2023E

Historical

Battery demand by mode and region, 2016-2022

65% increase YoY, 2022

Global Battery Demand mainly as a result of LDV electrical vehicles

Recycling Revenue 34% Growth for the Next 8 Years

Li-ion demand and recycling revenue expected to grow 27% and 34% annually, for the next 8 years

Projected

Projected

~27% 8-yr CAGR 6.7x

From ~700 Gwh to ~4,700 Gwh (2022 to 2030); driven by the mobility sector from China, Europe, the US, and the rest of the world respectively

~34% 8-yr CAGR

2027

2028

2029

2030

\$2.5B - \$27B (2022 to 2030)

2

3

4

5)

6)

7)

9)

10)

Executive Summary

Context

Market Outlook

Tailwinds Demand, Supply, Regulatory, Supply Chain, Circular Economy, and Carbon Emissions

Technology

Competitive Landscape

Economics

8 Headwinds

Investment Space

Demand Outstrips Supply

Bottleneck in the lack of Lithium supply

Li-ion Battery Supply and Demand (USA only)

Lithium-Ion Battery Supply and Demand (in GWh)

800 Gwh Supply, 2030 **2000 Gwh** Demand, 2030

1500 kt Supply, 2030 **3200 kt** Demand, 2030

95-98% of batteries end up in a landfill and new battery production depends on environmentally costly lithium mining

Alternate Supply: EOL Batteries as Highly Enriched Ores

Supply wave: EOL batteries coming off the road by 2030

¹Numbers are rounded.

After 2030, battery recycling supply will be rapidly accelerating

The recycling segment is still expected to be relatively small in 2030.

It is projected to grow more than three-fold in the following decade, when more batteries reach their end-of-life

Solactive Global Lithium Chart

Lithium surges in price

First wave – 2016 (L: 65; H: 140) Second wave – 2021 (L: 90; H: 360)

Regulations as Crucial Tailwinds

As similarly observed with EV adoption, initial push comes from regulatory support

Battery and Critical Mineral Recycling Act of 2021

Supports R&D on innovative battery recycling Establishment of a national collection system*

Aims to decrease U.S. dependence on critical mineral imports that are crucial to clean energy technology

EU Battery Regulation

50% of a battery's weight must be recycled

From 2025, this requirement will increase to 65% for lithium-ion batteries and to 70% from 2030

US Department of Energy announces new funding for lithium-ion battery recycling

The US Department of Energy announced on Monday June 12 that it was allocating more than \$192 million in new funding for recycling batteries from consumer products

Nations Aiming to Secure the Supply Chain

Optimized cross-border import and export economics

Battery Recycling offers **buffers against global supply chain volatility**, reduce dependence on foreign resources, and would allow regions to capture and **retain imported materials**

Major Mining Locations for Cobalt, Lithium, Nickel, and Manganese

Raw material demand in kilo tonnes per annum, base case

Source: IEA 2023

Circular Economy

For a Circular Economy to emerge, batteries must ultimately be recycled

Stockpiling of waste batteries is unsafe and environmentally undesirable

Batteries can leak **toxic chemicals** into the soil and groundwater, polluting the surrounding ecosystem

As the world increasingly relies on lithium-ion batteries, **it's essential that we consider their impact on the environment**

Overview of Circular Economy Levers for Batteries (kgCO2e per kWh)

Carbon Emissions Reduction through Recycling

The entire recycled process reduces emissions by -28% compared to the mined process

Battery Cell Production Emissions Comparison of Virgin Raw Materials vs. Recycled Raw Materials (kgCO2e per kWh)

Raw Material

Active Material Production

Cell Production

For raw materials' carbon emission, recycling reduces emissions by 28% vs. virgin/mined

TTV Fit Perspective

"A Progressive energy and solutions partner, enriching lives for a sustainable future"

PETRONAS

2022: Announced Net Zero Carbon

Emissions by 2050

Circular Economy through recycling "For PETRONAS, circular economy is integral to our sustainability efforts, and we are in the process of embedding the mindset of circular economy into our activities to enable a low waste future, steward natural resources, and minimise our carbon footprint while creating value."

- Petronas Pathway to NZCE 2050

2

3

4

5)

6)

Executive Summary

Context

Market Outlook

Tailwinds

Technology Mechanical, Pyrometallurgy, Hydrometallurgy, and Direct

Competitive Landscape

7 Economics

8

9)

10)

Headwinds

Investment Space

Key factor for evaluating battery recycling companies

The process used in recycling is one of the key factors for evaluating battery recycling companies, focusing on key differentiators--**cost efficiency, moats, and innovations**

Some companies use hybrid method combinations.

Efficiency in the Big Picture

Hybrid Methods

Sample typical combination routes taken that involve the technological processes in battery recycling

Mechanical + hydrometallurgical

Hydro: Emerging Popular Process, Highest Potential

The sweet spot for Li-ion battery recycling

Hydrometallurgy as the mode that balances mineral extraction and economics

2

4

5)

6)

7)

Executive Summary

Context

3 Market Outlook

Tailwinds

Technology

Competitive Landscape

9)

10)

Headwinds

Investment Space

Names in the Space

Nascent: few big players, concentrated market

	S √ OLT	REDW COD MATERIALS	Li-Cycle°
Total raised (USD millions)	3,231	2,978	774
Year founded	2018	2017	2016
First financing date	2020	2017	2017
HQ	Changzhou, China	Nevada, USA	Toronto, Canada

Solution to a Problem

Founded by **Tesla Co-Founder JB Straubel**, Redwood Materials was established in 2017 to help create a circular battery supply chain.

2

4

6)

7)

9)

10)

Executive Summary

Context

3 Market Outlook

Tailwinds

5 Technology

Competitive Landscape

Economics Business Models and Margins

8 Headwinds

Investment Space

Business Models

Sales or service

Revenue models

Revenue from Sales of Recovered Materials OEM may sell battery scrap to recyclers whereby value of raw material content is above the recycling cost plus margin

Recycling Service Fee

OEM maintains control over recovered raw materials and instead pays fee for recycling Significant cost considerations

Collection and logistics Transportation including hazardous goods surcharge

Processing Shredding, pyro/hydrometallurgical processing, labor, and energy

Testing and disassembly Labor and energy costs

Capital expenditures Buildings and equipment

Economics Still a Question Mark

Profitability has yet to be established but projections are promising

Projected

13% Margin (Gross) \$600/ton **Up to 31% Margin (Gross)** \$800-\$1,600/ton

2

3

4

6)

7)

8)

9)

10)

Executive Summary

Context

Market Outlook

Tailwinds

5 Technology

Competitive Landscape

Economics

Headwinds Collection, Logistics, Manual Labor, Design, Scale, Lifespan, and CAM Composition

Investment Space

Challenges

Collection and Logistics

Battery Collection

Mechanisms to enable battery collection at EoL are currently limited across jurisdictions.

There needs to be improved traceability of batteries and incentives for users to return EVs and batteries to battery recycling facilities.

Transport and Logistics

These add significant costs to recycling especially over large distances or internationally.

In addition, batteries may be considered hazardous goods which may mean further fees for import and export.

TTTV

Challenges

Myriad Designs and Manual Disassembly

Myriad Designs

Different chemistries and divergent designs (LDVs, Buses, Trucks) may call for different SOPs in battery recycling processes.

Manual Disassembly

With numerous designs available in the market, most initial stages rely on **human sorting and disassembling** batteries.

Fig. 2: Examples of three different battery packs and modules (cylindrical, prismatic and pouch cells) in use in current electric cars.

Challenges

Scale, Lifespan, and CAM

Economies of Scale

Due to collection and transportation challenges, a recurring supply of Feedstock may be difficult to secure which may prevent companies to prove out its processes and technologies at scale.

Standards on Lifespan

Current lifespans are between 8-15 years. Several OEMs are working on developing batteries with longer lifetimes, which could reach ~20 years.

However, consumers are more likely to upgrade vehicles before batteries reach end-of-life.

Cathode Active Material (CAM) Composition

Battery manufacturers may explore other cathode compositions that lower costly CAM contents (i.e., Lithium-ion to Sodium-ion). This shift could impact the viability of cost-efficient recycling.

De-risking

Observed collaborations between players to minimize risk

The necessity of partnerships in battery recycling is illustrated by the **networks** that larger companies have built. This better secures the feedstock stream and the eventual sale of products.

2

Executive Summary

Context

3 Market Outlook

Tailwinds

5

6)

7)

8)

9)

10)

4

Competitive Landscape

Economics

Headwinds

Investment Space Deals, Nascency, and Notable Investments

Investment Space (I of II)

Spikes in investment starting 2021

Nascency, Opportunity, and Potential On an absolute level, significant capital inflow started in 2021.

Investments in the higher single-digit billions are becoming evident.

However, when viewed comparatively, these amounts remain relatively modest when contrasted with the entirety of the electric vehicle industry.

Investment Space (II of II)

Example of investment activities by VC / CVC investors in the space

3)

4

6)

7)

9)

Executive Summary

Context

Market Outlook

Tailwinds

5 Technology

Competitive Landscape

Economics

8 Headwinds

Investment Space

10) Takeaways Growth, Technology, Tailwinds, and Headwinds

Takeaways

The rising tide of EVs lifts the battery recycling boat

The battery recycling industry is **nascent and poised to see growth (~34% annually)** following the exponential rise of Electric Vehicles as the global market looks to sustainability and a circular economy with end-of-life batteries.

Hydrometallurgy is observed to be the emerging popular technique. Battery recycling companies with the **most efficient process technologies** and streamlined value chains will have an advantage in riding and profiting from the wave.

Tailwinds for the growth of the industry include **process innovations**, **surging demand for Li-ion batteries**, **government regulatory suppor**t for reduction in foreign resource dependence and; a **push in sustainability**.

Some headwinds seen faced in the industry include profitability, battery collection & transport, lack of battery standardization, manual processes, and scaling operations.

Thank You

